
Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 1

Fast conversion from a String to an arbitrary precision
number.

By Henrik Vestermark (hve@hvks.com)

Abstract
This is a follow-up to a previous paper that describes a very fast method to convert an
arbitrary precision number to a string. This paper describes the opposite process of
converting a string number to an arbitrary precision number. We all know how to convert
a string number to simple language types like integer and float using basic encoding
technics. However, how does it stack up when the string contains 1,000 to 1M string
digits or even more when converting it to an arbitrary precision number?
This paper describes the issue with the basic conversion algorithm and outlines a new
improved algorithm that speeds up the process by a factor of more than 20,000.

Introduction
This issue come to light when I was finished writing a new version of my Arbitrary
Precision Math library where I converted the internal format from a decimal base string
form (where each arbitrary precision number was stored as a decimal string) to a binary
form (where the arbitrary precision number was stored as a vector of binary digits). In the
conversion process everything when smoothly until I began to test the performance of the
library. The internal arithmetic handling was fast for all the usual types like +,-,*,/ etc. as
expected when using binary digits instead of decimal digits. However, when I was testing
the initialization of an arbitrary precision number with a string, the performance when
‘south’ when handling more than a few thousand digits. To improve the performance I
outline here a new way to handle this conversion for string digits of a million digits or
more.

Change log
2-March-2023. Minor corrections and cleaning up the document.

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 2

Contents
Abstract: .. 1
Introduction: .. 1
A simple approach for conversion from string form .. 3
The Arbitrary precision library ... 3
1st Approach .. 4
2nd Approach ... 5
3rd Approach.. 6
String numbers in other bases ... 9
Arbitrary precision numbers ... 9
Conclusion .. 10
Reference .. 10

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 3

A simple approach for conversion from string form
As taught in computer language classes, we learn how to convert a decimal string to
binary numbers and there are several possibilities to accomplish this.

1) Use the library sscanf() function.
2) Use atoi(), strtol(), or similar if you were dealing with integers.
3) Use cin >> to a variable;
4) Write your little code block.
5) Other methods.

To make it simple we will only discuss the method for converting a string to an arbitrary
precision integer, although with few changes it can be adapted to handle conversion from
a decimal floating-point string to an arbitrary precision floating point. We will initially
use a common string as the input to our arbitrary precision number, based on the STL
library string class. We will also briefly discuss when the input string is not in a decimal
form but represent other bases like hexadecimal, octal, or binary string numbers.
Usually, the input process does one decimal digit conversion at a time as used in the
following pseudo algorithm. The algorithm is based on building the integer number one
digit at a time.

The algorithm is as follows:

1. Take the first decimal string digit and convert it to a binary digit
2. Multiply the sum by the base (10)
3. Add the single binary digit from 1 to the sum
4. Repeat the process until all digits have been converted

The function standard() can easily be written, see below:

uintmax_t standard(const string& s)
 {
 size_ t i;
 uintmax_t number = 0;
 for (i = 0; i < s.size(); ++i)
 {
 number *= 10;
 number += s[i] - '0';
 }
 return number;
 }

uintmax_t is the biggest integer available. In most systems, it is a 64-bit quantity.
Overall, basic stuff.

The Arbitrary precision library

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 4

The int_precision class is a signed arbitrary precision variable. It has two members in the
class.

1) int mSign
2) vector<uintmax_t> mBinary

The mSign holds the sign of the int_precision number and can be either +1 for positive
numbers or -1 for negative numbers.
The mBinary is a vector of uintmax_t binary numbers (64bit unsigned integer)

The first entry is the least significant 64-bit of the arbitrary number and the increased
vector index is increasing the significance of the number. The highest entry at
mBinary.size()-1 is the most significant 64-bit of the arbitrary precision number.

For the algorithm presented here, you do not need to know any details of the internal of
the int_precision class.

1st Approach
Using the author’s arbitrary precision library we can now make our first approach to
handle an unlimited number of decimals in a string for conversion to arbitrary precision.
The arbitrary version of the C++ type, int is the type int_precision. Our first approach is
simply to replace the declaration with the uintmax_t with the int_precision declaration to
create our first solution.

int_precision firstapproach(const string& s)
 {
 size_t i;
 int_precision number = 0;
 for (i = 0; i < s.size(); ++i)
 {
 number *= 10;
 number += s[i] - '0';
 }
 return number;
 }

Now we can throw strings containing thousands, millions, or even higher string numbers
and it will all be converted to the internal binary version of the string.

Testing the solutions from 100 decimal digits up to 1M decimal string digits, you get the
following performance.

String to Binary conversion Time in msec
100 0.07
1,000 2.63
10,000 245
100,000 26,648

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 5

1,000,000 2,626,000 (2,636 sec)

Up to around 10,000 decimal digits, you get an acceptable performance but then it goes
“south” from here, and for 1M digits number the conversion takes 2,626 Seconds, or
more than 40 minutes, which of course is not acceptable.

2nd Approach

Our next approach is to recognize that the multiplication for every digit is where the vast
majority of the time is spent and performance gets worse the more digits you are dealing
with. Instead of doing one digit at a time you can do 19 digits at a time using the C
library strtoull() functions. That way we use a “native” calculation to process up to 19
digits at a time and then only do the more expensive arbitrary precision multiplication for
every 19 digits. This is not a new thing but something you will see in countless other
implementations of an arbitrary precision package.

The algorithm for our 2nd approach is below.

int_precision secondapproach(const string& s)
 {
 int_precision number = 0;
 size_t i, length = s.size();
 const size_t max_digits = 19;
 uintmax_t pwr = _powerof10Table[max_digits];

 for (i = 0; length >= max_digits; length -= max_digits, i += max_digits)
 {
 number *= pwr;
 number += strtoull(s.substr(i, max_digits).c_str(), NULL, BASE_10);
 }

 if (length != 0)
 {
 number *= _powerof10Table[length];
 number += strtoull(s.substr(i, length).c_str(), NULL, BASE_10);
 }

 return number;
 }

The constant table _powerof10Table holds the power for each digit from 0 to 19 and is
not shown here. With this approach, we limit the calculation of both the multiplication
and the addition for arbitrary precision to once every 19 digits to process.

The performance is of course a lot better as indicated in below performance table

String to Binary conversion Time in msec
 1st approach 2nd approach

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 6

100 0.07 0.008
1,000 2.63 0.16
10,000 245 12.6
100,000 26,648 1,315
1,000,000 2,626,000 (2636 sec) 134,601 (135 sec)

Not surprisingly, our 2nd approach is much faster and gives nearly acceptable
performance however, as you can see 100k digits are done in approx. 1.3sec, but 1M digit
is ~ 135sec. The worst-case behavior is still ~n2 which make this approach not suitable
for number exceeding 100-200k digits.

Can we do better than this? The answer is yes, as developed in our 3rd approach.

3rd Approach

The problem with our two first algorithms is that the multiplication is performed using an
increasing number of digits slowing the process down as the number of digits gets higher.
The n2 behavior is not suitable for a very large number of decimal digits.

In our 3rd approach, we divide the new algorithm into 2 steps.

The first step is just to process the decimal string into trunks of 19 digits using the c
library built-in function strtoull() (64bit) and save them in a vector (array) of
int_precision numbers to be used in step2 of the new algorithm.

The vector is declared as:

 vector<int_precision> vn(0);

With a size of zero (no elements). We then process the initial string backward 19 digits at
a time and stored each 19-digit trunk in the vector. Since we push it from the back onto
the vector, we get trunks of 19 digits with increasing significance. The variable length is
the size of our string, s, that holds the decimal string. max_digits is the constant 19
representing the maximum number a 64-bit unsigned integer can hold.

// Step 1 partition the string into a (single size) int_precision vector in order from most to
least significant
for (; length > max_digits; length -= max_digits)
 vn.push_back(strtoull(s.substr(length - max_digits, max_digits).c_str(), NULL, BASE_10));
vn.push_back(strtoull(s.substr(0, length).c_str(), NULL, BASE_10));

The illustration below shows how a decimal string is processed and stored as an element
in the vector of int_precision numbers.

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 7

Now the real-time saving or performance gain comes from the processing of the initial
vector into the final number. We do that by repeatedly doing a pairwise calculation of
two adjacent numbers multiplied by the radix. Since the number is initially stored as 19-
digit entries, the initial radix is 1019. The first loop of running through the vector will
create a new vector with half the entries rounded to an even number of vector elements.
We reuse the existing vector instead of storing it in a new vector. Since we have 6
elements in the first loop will create a new vector with 3 elements.

The first new entry is created by: v[0]=V[0]+V[1]*radix etc.
Moreover, we continuously loop until the vector size is down to one. For each loop, we
square the radix

And the last loop

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 8

Now the first entry v[0] contains the binary counterpart to the decimal string.
The algorithm reduces the number of multiplications with a high number of digits and
creates an algorithm that scales much better than the two first algorithms.

The final algorithm is shown below and is surprisingly simple:

int_precision thirdapproach(const std::string& s)
 {
 const size_t max_digits = 19;
 size_t length =s.size(), i, j;
 vector<int_precision> vn(0);
 int_precision radix=_powerof10Table[max_digits];
 // Reserve enough space to avoid resizing of vector
 vn.reserve(length / max_digits + 16);
 // Step 1 partition the string into a (single size) int_precision vector
 // in order from most to least significant
 for (; length > max_digits; length -= max_digits)
 vn.push_back(strtoull(s.substr(length - max_digits,
max_digits).c_str(), NULL, BASE_10));
 vn.push_back(strtoull(s.substr(0, length).c_str(), NULL, BASE_10));

 // Step2 collected into higher binary values by reducing the vector
 // to half its size per iteration
 while(vn.size() > 1)
 {
 for (i = 0, j = 0; j < vn.size(); ++i, j += 2)
 {
 if (j + 1 < vn.size())
 vn[i] = vn[j] + vn[j + 1] * radix;
 else
 vn[i] = vn[j];
 }
 vn.resize(i); // Resize the vector to half it size
 if (i > 1)
 radix *= radix; // Update the radix
 }

 return vn[0];
 }

The performance is also considerably better as shown in this table

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 9

String to Binary
conversion

Time in msec

 1st approach 2nd approach 3rd approach
100 0.07 0.008 0.008
1,000 2.63 0.16 0.10
10,000 245 12.6 4.9
100,000 26,648 1,315 147
1,000,000 2,626,000 (2636 sec) 134,601 1,371
10,000,000 - 13,888,000 18,767

With the new algorithm, we can now process 1M decimal digits in less than 1,4 seconds
and only 18.7 sec for 10M digits. Based on the above table it is very clear that the 2nd
approach scales poorly (O(n2) while the 3rd approach scale linearly and therefore has a
much improved worst-case behavior compared to the 2nd approach.

String numbers in other bases

Until now, we have only dealt with decimal string numbers. However using standard C++
notation you could call the function with string numbers in Hexadecimal (base 16), Octal
(base 8), and binary (base 2).

For base 2 and base 16, we can use a shortcut. The internal of the int_precision is stored
in vectors of uintmax_t (unsigned 64-bit entries) and we can therefore directly map it into
the int_precision vector stored as mBinary vector in the class definition. A hexadecimal
number is exactly 4-bits wide and we can therefore store 16 hexadecimal digits into one
internal vector entry in mBinary. This is essentially step 1 of the new algorithm avoiding
step two entirely. The same goes for base two where we could store exactly 64 base 2
digits into one internal vector entry in mBinary and again avoid the step two process.
With Octal, we are not so lucky. In addition, an octal number requires 3 bits, therefore 21
octal digits will require 63 bits, and 22 octal digits will require 66 bits. We will need to
do the same as we did for the decimal handling when it does not divide evenly up into 64
bits.

Here we can group the octal number into trunks of 21 digits at a time in step one of the
algorithms. Set the initial radix to 821 and then perform step two as we did for the decimal
algorithm.

Arbitrary precision numbers

Until now we have avoided any discussion about floating point numbers. However, we
can use the same algorithm as outlined here. A floating-point number has the format

Fast Conversion from string to Arbitrary Precision number

2 March 2023. Page 10

xxxx.yyyyyyyEeeee

Where xxxx is the digit in front of the period ‘.’
yyyyyyy is the fraction part.
E is the exponent designator and eeee is the signed exponent.

If we ignore the fraction character ‘.’ then xxxyyyyyy is an integer number and we can
use the algorithm layout in this document. After the calculation, we can adjust for the
number of fraction digits by multiplying the result with 10-numberoffractiondigits+eeee to get the
correct result.

Conclusion
The above new methods show that you can gain a significant performance improvement
by re-defining the algorithm using pairwise calculation with radix squaring.

Reference

1) Arbitrary precision library package. Arbitrary Precision C++ Packages
(hvks.com)

